OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng tỏ rằng phương trình x^2−(2m−3)x+m^2−3m=0 luôn có 2 nghiệm phân biệt

1.Cho: \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Chứng tỏ rằng pt luôn có 2 nghiệm phân biệt

2.Cho : \(x^2-2\left(m+1\right)x+7\)

Tìm m để pt có nghiệm kép

  bởi hoàng duy 25/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • 1) ta có : \(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)\)

    \(=4m^2-12m+9-4m^2+12m=9>0\forall m\)

    \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)

    2) ta có : \(\Delta'=\left(m+1\right)^2-7=m^2+2m+1-7=m^2+2m-6\)

    để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow m^2+2m-6=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{7}\\m=-1-\sqrt{7}\end{matrix}\right.\) vậy ...........................................................................

      bởi Nguyễn Long 25/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF