OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh y=mx+2m+1 luôn luôn đi qua 1 điểm cố định

CMR: Đường thẳng (d): \(y=mx+2m+1\) luôn luôn đi qua 1 điểm cố định khi giá trị m thay đổi

  bởi Dương Quá 26/10/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Ta có:

    \(y=mx+2m+1\) với mọi m

    \(\Leftrightarrow m(x+2)+(1-y)=0\) với mọi m

    Để điều trên đúng với mọi m thì \(\left\{\begin{matrix} x+2=0\\ 1-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=1\end{matrix}\right.\)

    Vây điểm \((-2;1)\) là điểm cố định luôn đi qua d khi m thay đổi

    Nghĩa là luôn tồn tại một điểm cố định khi giá trị m thay đổi (đpcm)

      bởi Trần Tuấn 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF