OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh sin A/2

cho tam giác ABC có BC = a , CA=b, AB=c

CMR sin\(\dfrac{A}{2}\) < hoặc = \(\dfrac{a}{b+c}\)

sin\(\dfrac{A}{2}\) . sin \(\dfrac{B}{2}\) . sin\(\dfrac{C}{2}\)< hoặc = \(\dfrac{1}{8}\)

  bởi thanh hằng 29/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)

    Áp dụng vào bài toán và sử dụng định lý hàm cos:

    \(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)

    Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)

    \(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)

    \(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)

    BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)

    Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)

    Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)

    \(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)

    Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)

    \(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)

      bởi TRần Kun 29/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF