OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

- Em hỏi trên olm thì chưa thấy ai trả lời nên đem lên đây, mà anh chị biết thì giúp em với ạ :D

Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

  bởi Aser Aser 04/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  •  

    Ta sẽ chứng minh tồn tại các số tự nhiên m,p sao cho : 

        96 000 .. 000 +  a + 15p < 97 000 .... 000

         m chữ số 0                      m chữ số 0

    Tức là : \(96\frac{a}{10^m}+\frac{15p}{10^m}< 97\left(1\right)\).Gọi \(a+15\)là số có \(k\)chữ số : \(10^{k1}a+15< 10^k\)

    \(\Rightarrow\frac{1}{10}\le\frac{a}{10^k}+\frac{15}{10^k}< 1\left(2\right).\)Đặt \(x_n=\frac{a}{10^k}+\frac{15p}{10^k}\). Theo \(\left(2\right)\)

    Ta có : \(x_1< 1\)và \(\frac{15}{10^k}< 1\)

    Cho \(n\)nhận lần lượt các giá trị \(2;3;4;...;\)các giá trị nguyên của \(x_n\)tăng dần ,mỗi lần tăng không quá 1 đơn vị , khi đó [ \(x_n\)sẽ trải qua các giá trị \(1,2,3,\)Đến một lúc ta có \(\left[x_p\right]=96\).Khi đó \(96x_p\)tức là \(96\frac{a}{10^k}+\frac{15p}{10^k}< 97\). Bất đẳng thức \(\left(1\right)\)đợt chứng minh

     
      bởi Nguyễn Thành Long 04/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF