OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng tổng 1/(a-b)^2 >=9/4

Cho \(a,b,c\in\left[0;2\right]\)

C/m : \(\sum\dfrac{1}{\left(a-b\right)^2}\ge\dfrac{9}{4}\)

  bởi Anh Nguyễn 16/01/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Không mất tính tổng quát ta giả sử:

    \(0\le a\le b\le c\le4\)

    Ta có: \(\dfrac{1}{\left(a-b\right)^2}+\left(b-a\right)+\left(b-a\right)\ge3\)(1)

    \(\dfrac{1}{\left(b-c\right)^2}+\left(c-b\right)+\left(c-b\right)\ge3\left(2\right)\)

    \(\dfrac{1}{\left(c-a\right)^2}+\dfrac{\left(c-a\right)}{8}+\dfrac{\left(c-a\right)}{8}\ge\dfrac{3}{4}\left(3\right)\)

    Cộng (1), (2), (3) vế theo vế rồi rút gọn ta được.

    \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}+\dfrac{9c-9a}{4}\ge\dfrac{27}{4}\)

    \(\Leftrightarrow\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{27}{4}+\dfrac{9a-9c}{4}\)

    \(\ge\dfrac{27}{4}+\dfrac{9.0-2.9}{4}=\dfrac{9}{4}\)

    Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=0\\b=1\\c=2\end{matrix}\right.\)

      bởi Nguyễn Trọng Khang 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF