OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng SinA/2

Cho a,b,c lần lượt là độ dài cạnh BC,CA,Ab của tam giác ABC. CMR: \(Sin\frac{A}{2}< =\frac{a}{2\sqrt{bc}}\)

  bởi con cai 21/01/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • A B C H K M

    Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)

    \(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)

    Lại có : \(BH\le BM;CK\le CM\) 

    \(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)

    \(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)

     

      bởi Nguyễn Huyền 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF