OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh răng a^2/c+d/b^2 >= 2

Cho a,b,c,d là các số dương thỏa mãn : a^2+b^2 =1 và a^4/c+b^4/d =1/(c+d) . Chứng minh răng : a^2/c+d/b^2 >= 2

  bởi Bin Nguyễn 22/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Áp dụng BĐT cauchy-schwarz:

    \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)

    dấu = xảy ra khi\(\frac{a^2}{c}=\frac{b^2}{d}\Leftrightarrow a^2d=b^2c\)\(a=b=\frac{1}{\sqrt{2}}\)

    mà theo đề:\(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\Leftrightarrow a^2d=b^2c\)

    Áp dụng BĐT cauchy:\(\frac{a^2}{c}+\frac{d}{b^2}\ge2\sqrt{\frac{a^2d}{b^2c}}=2\)

    dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

      bởi Vương Hàn Tuyết 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF