OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng a^2 +b^2 +c^2 +abc ≥ 4

Cho các số thực dương a, b, c thỏa mãn : a+b+c =3 Chứng minh rằng: a2 +b2 +c2 +abc \(\ge\)4.

  bởi Bánh Mì 22/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có bổ đề sau: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

    C/m bổ đề: Theo nguyên lí Dirichle tồn tại 2 trong 3 số a,b,c cùng \(\ge1\) hoặc \(\le1\). Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\)

    Ta có:

    \(a^2+b^2+c^2+2abc+1 - 2(ab+bc+ca) = (a-b)^2 +(c-1)^2+ 2c(a-1)(b-1) \geq 0\)

    Áp dụng vào bài toán ta có:

    \(2\left(a^2+b^2+c^2\right)+2abc+1=a^2+b^2+c^2+\left(a^2+b^2+c^2+2abc+1\right)\)

    \(\ge a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2=9\)

    \(\Rightarrow2VT+1\ge9\Rightarrow VT\ge8\Rightarrow VT\ge4\)

    Đẳng thức xảy ra khi \(a=b=c=1\)

      bởi Trương Ngọc Anh 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF