OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng 1/x^2+x+1 + 1/y^2+y+1 + 1/z^2+z+1 ≥ 1

cho x,y,z>0 thỏa mãn xyz=1. chứng minh rằng

\(\dfrac{1}{x^2+x+1}+\dfrac{1}{y^2+y+1}+\dfrac{1}{z^2+z+1}\ge1\)

  bởi Nguyễn Phương Khanh 25/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Guể :v t nhớ làm bài này rồi mà :v

    Đặt \(x=\dfrac{bc}{a^2};y=\dfrac{ac}{b^2};z=\dfrac{ab}{c^2}\)\(\Rightarrow\left\{{}\begin{matrix}abc=1\\a,b,c>0\end{matrix}\right.\)

    \(BDT\Leftrightarrow\dfrac{a^4}{b^2c^2+a^2bc+a^4}+\dfrac{b^4}{a^2c^2+ab^2c+b^4}+\dfrac{c^4}{a^2b^2+abc^2+c^4}\ge1\)

    Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

    \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\)

    Cần chứng minh \(\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\ge1\)

    \(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

    \(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

    \(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+a^2bc+abc^2\)

    \(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) *Đúng theo AM-GM*

      bởi Nguyễn Phúc 25/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF