OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng 1/BK^2=1/BC^2+1/4AH^2

Cho tam giác ABC cân tại A có các đường cao AH và BK . CM \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

  bởi Tram Anh 28/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • A B C H K

    Tam giác ABC cân ở A có đường cao AH=>BC=2CH

    Ta có:\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AH^2+BC^2}{4BC^2AH^2}=\dfrac{4AH^2+\left(2CH\right)^2}{16S_{ABC}^2}=\dfrac{4\left(AH^2+CH^2\right)}{16S^2_{ABC}}\)

    Do AH vuông góc với BC nên theo pytago AH2+CH2=AC2

    =>\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AC^2}{16S^2_{ABC}}=\dfrac{AC^2}{4\cdot\left(\dfrac{1}{2}AC\cdot BK\right)^2}=\dfrac{1}{BK^2}\left(ĐPCM\right)\)

      bởi nguyễn văn chính 28/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF