OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho phương trình sau \({x^2} - 2mx + 2m - 1 = 0\) (m là tham số) (1). Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\;{x_2}\) sao cho: \(\left( {x_1^2 - 2m{x_1} + 3} \right)\left( {x_2^2 - 2m{x_2} - 2} \right) = 50.\)

Cho phương trình sau \({x^2} - 2mx + 2m - 1 = 0\) (m là tham số)   (1). Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\;{x_2}\) sao cho: \(\left( {x_1^2 - 2m{x_1} + 3} \right)\left( {x_2^2 - 2m{x_2} - 2} \right) = 50.\)

  bởi Ngoc Son 10/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Phương trình (1) có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0\)

    \(\begin{array}{l} \Leftrightarrow {m^2} - 2m + 1 > 0\\ \Leftrightarrow {\left( {m - 1} \right)^2} > 0\\ \Leftrightarrow m - 1 \ne 0\\ \Leftrightarrow m \ne 1.\end{array}\)

    Với \(m \ne 1\) thì phương trình (1) có hai nghiệm phân biệt \({x_1},\;\;{x_2}.\)

    Khi đó ta có: \(\left\{ \begin{array}{l}x_1^2 - 2m{x_1} + 2m - 1 = 0\\x_1^2 - 2m{x_1} + 2m - 1 = 0\end{array} \right..\)

    Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = 2m - 1\end{array} \right..\)

    Theo đề bài ta có: \(\left( {x_1^2 - 2m{x_1} + 3} \right)\left( {x_2^2 - 2m{x_2} - 2} \right) = 50\)

    \(\begin{array}{l} \Leftrightarrow \left( {x_1^2 - 2m{x_1} + 2m - 1 - 2m + 4} \right)\left( {x_2^2 - 2m{x_2} + 2m - 1 - 2m - 1} \right) = 50\\ \Leftrightarrow \left( {4 - 2m} \right)\left( { - 2m - 1} \right) = 50\\ \Leftrightarrow \left( {2m - 4} \right)\left( {2m + 1} \right) = 50\\ \Leftrightarrow \left( {m - 2} \right)\left( {2m + 1} \right) = 25\\ \Leftrightarrow 2{m^2} + m - 4m - 2 = 25\\ \Leftrightarrow 2{m^2} - 3m - 27 = 0\\ \Leftrightarrow 2{m^2} - 9m + 6m - 27 = 0\\ \Leftrightarrow m\left( {2m - 9} \right) + 3\left( {2m - 9} \right) = 0\\ \Leftrightarrow \left( {2m - 9} \right)\left( {m + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2m - 9 = 0\\m + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{9}{2}\;\;\left( {tm} \right)\\m =  - 3\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

    Vậy \(m = \dfrac{9}{2}\) và \(m =  - 3\) thỏa mãn điều kiện bài toán.

      bởi Mai Đào 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF