OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài 79 trang 17 sách bài tập Toán 9 tập 1

Bài 79 (Sách bài tập tập 1 - trang 17)

Cho các số \(x\) và \(y\) có dạng :

\(x=a_1\sqrt{2}+b_1\) và \(y=a_2\sqrt{2}+b_2\)

trong đó \(a_1,a_2,b_1,b_2\) là các số hữu tỉ. Chứng minh 

a) \(x+y\) và \(x.y\) cũng có dạng \(a\sqrt{2}+b\) với a và b là số hữu tỉ

b) \(\dfrac{x}{y}\) với \(y\ne0\) cũng có dạng \(a\sqrt{2}+b\) với a và b là số hữu tỉ

  bởi Nguyễn Trọng Nhân 04/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

    mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

    =>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

    ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

    a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

    b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

    =\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

    a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

      bởi Hiền Thanh 04/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF