OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm min biết A= 2x^2-20x+53

1. Tìm min

A= 2x2-20x+53

B= 2x2+3x+1

  bởi Nguyễn Minh Hải 26/12/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • A = 2x2 - 20x + 53

    = \([\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.5\sqrt{2}+\left(5\sqrt{2}\right)^{2^{ }}]+3\)

    = \(\left(x\sqrt{2}-5\sqrt{2}\right)^{2^{ }}+3\ge3\)

    Dấu "=" xảy ra khi \(x\sqrt{2}-5\sqrt{2}=0\) <=> \(x\sqrt{2}=5\sqrt{2}\) <=> x=5

    Vậy MinA = 3 khi x = 5

    B = 2x2 + 3x + 1

    = \([\left(x\sqrt{2}\right)^{2^{ }}+2.x\sqrt{2}.\dfrac{3\sqrt{2}}{4}+\left(\dfrac{3\sqrt{2}}{4}\right)^{2^{ }}]-\dfrac{1}{8}\)

    = \(\left(x\sqrt{2}+\dfrac{3\sqrt{2}}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

    Dấu "=" xảy ra khi \(x\sqrt{2}+\dfrac{3\sqrt{2}}{4}=0\) <=> \(x\sqrt{2}=\dfrac{-3\sqrt{2}}{4}\) <=> x = \(\dfrac{-3}{4}\)

    Vậy MinB = \(\dfrac{-1}{8}\) khi x = \(\dfrac{-3}{4}\)

      bởi Huyền Rinn 26/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF