OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng tỏ 25x^2 +3-10x > 0 với mọi x

Bài 1: Chứng tỏ:

a) 25x+3-10x > 0 vs mọi x

b) -9x -2 + 6x < 0 vs mọi x

Bài 2: Tìm x để

Biểu thức A: 4x+ 3 - 4x đặt GTNN ( giá trị nhỏ nhất )

Biểu thức B: -x+10x -28 đặt GTLN ( giá trị lớn nhất )

  bởi Nguyễn Minh Hải 29/04/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • A = 25x2 + 3 - 10x

    = (5x)2 - 2 . 5x . 1 + 1 + 2

    = (5x - 1)2 + 2

    (5x - 1)2 lớn hơn hoặc bằng 0

    (5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0 

    Vậy A > 0 vs mọi x (đpcm)

    B = - 9x2 - 2 + 6x 

    = - [(3x)2 - 2 . 3x . 1 + 1 + 1]

    = - [(3x - 1)2 + 1]

    (3x - 1)2 lớn hơn hoặc bằng 0

    (3x - 1)2 + 1 lớn hơn hoặc bằng 1 

    - [(3x - 1)2 + 1] nhỏ hơn hoặc bằng  - 1 < 0

    Vậy B < 0 với mọi x (đpcm)

    ***

    A = 4x2 - 4x + 3

    = (2x)2 - 2 . 2x . 1 + 1 + 2

    = (2x - 1)2 + 2

    (2x - 1)2 lớn hơn hoặc bằng 0

    (2x - 1)2 + 2 lớn hơn hoặc bằng 2

    Min A = 2 khi x = 1/2

    B = -x2 + 10x - 28

    = - [x2 - 2 . x . 5 + 25 + 3]

    = - [(x - 5)2 + 3]

    (x - 5)2 lớn hơn hoặc bằng 0

    (x - 5)2 + 3 lớn hơn hoặc bằng 3

    - [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3

    Vậy Max B = 3 khi x = 5

      bởi Trương Ngọc Hà 29/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF