OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho phân thức A = \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\). Hãy chia tử và mẫu của phân thức A cho \(3xy\) rồi so sánh phân thức vừa nhận được với phân thức đã cho.

  bởi Thiên Mai 01/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(3x^2y : 3xy = x\)

    \(6xy^3 : 3xy = 2y^2\)

    Suy ra, chia cả tử và mẫu của phân thức \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\) cho \(3xy\) ta được phân thức \(\dfrac{x}{{2{y^2}}}\)

    So sánh hai phân thức: \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\) và \( \dfrac{x}{{2{y^2}}}\)

    Xét tích chéo:

    \(3x^2y . 2y^2 = 6x^2y^3\)

    \(6xy^3.x = 6x^2y^3\)

    Suy ra: \(3x^2y . 2y^2 =6xy^3.x\)

    Do đó: \(\dfrac{{3{x^2}y}}{{6x{y^3}}} = \dfrac{x}{{2{y^2}}}\)

      bởi Lê Tường Vy 02/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF