OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) Chứng minh rằng:

a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

  bởi Lê Tường Vy 25/08/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a)

    \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

    \(\Rightarrow\frac{xy+yz+xz}{xyz}=0\)

    \(\Rightarrow xy+yz+xz=0\)

    \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

    \(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2xy+2yz+2xz\)

    \(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

    Do \(xy+yz+xz=0\)

    \(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2\) ( đpcm )

    b)

    \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

    \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}\)

    \(\Rightarrow\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}=0\)

    \(\Rightarrow2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}\right)=0\)

    \(\Rightarrow\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}=0\)

    \(\Rightarrow\frac{\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(b-c\right)^2\left(a-b\right)\left(c-a\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

    \(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

    \(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(-a+a\right)+\left(-b+b\right)+\left(-c+c\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

    \(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right).0}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

    \(\Rightarrow0=0\) ( đpcm )

      bởi Nguyễn Hoàng Phúc 03/07/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF