Với ba số như sau a, b, c dương. Chứng tỏ rằng \(M = \dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}}\) không là số nguyên.\(\)
Với ba số như sau a, b, c dương. Chứng tỏ rằng \(M = \dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}}\) không là số nguyên.\(\)
Câu trả lời (1)
-
Ta có:
\(\begin{array}{l}\dfrac{a}{{a + b}} > \dfrac{a}{{a + b + c}}\\\dfrac{b}{{b + c}} > \dfrac{b}{{a + b + c}}\\\dfrac{c}{{c + a}} > \dfrac{c}{{a + b + c}}\end{array}\)
Cộng vế với vế ta được:
\(\dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}} > \dfrac{a}{{a + b + c}} + \dfrac{b}{{a + b + c}} + \dfrac{c}{{a + b + c}}\)\(\,\left( { = \dfrac{{a + b + c}}{{a + b + c}} = 1} \right)\) (1)
Lại có:
\(\begin{array}{l}\dfrac{a}{{a + b}} < \dfrac{{a + c}}{{a + b + c}}\\\dfrac{b}{{b + c}} < \dfrac{{b + a}}{{a + b + c}}\\\dfrac{c}{{c + a}} < \dfrac{{c + b}}{{a + b + c}}\end{array}\)
Cộng vế với vế ta được:
\(\dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}} < \dfrac{{a + c}}{{a + b + c}} + \dfrac{{b + a}}{{a + b + c}} + \dfrac{{c + b}}{{a + b + c}}\)\(\,\left( { = \dfrac{{2(a + b + c)}}{{a + b + c}} = 2} \right)\) (2)
Từ (1) và (2) ta có: \(1 < \dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}} < 2\)
\( \Rightarrow \dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}}\) không phải là số nguyên (đpcm).
bởi Bảo Lộc 13/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời