OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tính số đo góc AED biết tam giác ABC có góc A=90 độ, 4 góc B=5 góc C

Cho tam giác ABC, góc A = 90o , AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB sao cho AE=AC

a) CMR: DE\(\perp\) BC

b) Biết \(4\widehat{B}=5\widehat{C}\) . Tính số đo góc AED ?

  bởi May May 26/03/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • hình tự vẽ... > . < ...

    a) Gọi giao điểm của BC và ED là I

    Xét ΔABC và ΔADE có:

    \(AB=AD\left(gt\right)\)

    \(\widehat{BAC}=\widehat{DAE}=90^0\)

    \(AE=AC\left(gt\right)\)

    => ΔABC = ΔADE ( c.g.c )

    \(\widehat{C}=\widehat{E}\) ( 2 góc tương ứng ) (*)

    Do ΔABC có \(\widehat{A}=90^0\)

    \(\widehat{B}+\widehat{C}=90^0\) (**)

    Từ (*) ,(**) \(\Rightarrow\widehat{B}+\widehat{E}=90^0\)

    ΔIEB có : \(\widehat{B}+\widehat{E}+\widehat{EIB}=180^0\)

    hay : \(90^0+\widehat{EIB}=180^0\)

    \(\Rightarrow\widehat{EIB}=90^0\)

    hay ED⊥BC

    b) Từ \(4\widehat{B}=5\widehat{C}\Rightarrow\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)

    ΔABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

    +) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

    \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{5+4}=\dfrac{90^0}{9}=10\)

    \(\dfrac{\widehat{C}}{4}=10\Rightarrow\widehat{C}=10\cdot4=40^0\)

    \(\widehat{C}=\widehat{AED}\) ( 2 cạnh tương ứng )

    \(\Rightarrow\widehat{AED}=90^0\)

    Vậy..........

      bởi đinh thị dung 26/03/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF