OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tính (S-P)^2013 biết S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013

Câu 1:Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2012\right|+\left|x-2013\right|\) với x là số tự nhiên

Câu 2:Cho tam giác ABC cân tại A và có cả 3 góc đều là góc nhọn.
a)Về phía ngoài của tam giác vẽ tam giác ABE vuông cân tại B. Gọi H là trung điểm của BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh 2 tam giác ABI và BEC bằng nhau và \(BI\perp CE.\)

b)Tia phân giác của các góc ABC và BDC cắt AC,BC lần lượt tại D,M.Phân gác của góc BDA cắt BC tại N.Chứng minh rằng: BD=\(\dfrac{1}{2}MN\)

Câu 3: Cho S=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)và P=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\).

Tính \(\left(S-P\right)^{2013}\)

  bởi Đan Nguyên 16/12/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Câu 3:

    \(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

    \(\Rightarrow S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{2012}\right)\)

    \(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

    \(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-1-\frac{1}{2}-...-\frac{1}{2012}\)

    \(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)

    \(\Rightarrow S=P\)

    \(\Rightarrow S-P=0\)

    \(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

    Vậy \(\left(S-P\right)^{2013}=0\)

      bởi Trịnh Trinh 16/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF