OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cm M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(z+t+x) có giá trị ko là số tự nhiên

Cho x,y,z,t ϵ N. Chứng minh rằng:

M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{z+t+x}\) có giá trị không phải là số tự nhiên

  bởi Nguyễn Hồng Tiến 30/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

    \(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

    \(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

    \(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

    Cộng vế với vế ta được:

    \(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)

    \(\Rightarrow1< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< 2\)

    \(\Rightarrow1< M< 2\)

    => M không là số tự nhiên

      bởi Trần Phượng 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF