OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t) không là số tự nhiên

Cho x, y , t \(\in\) N*. Chứng minh rằng: \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) có giá trị không phải là số tự nhiên.

  bởi Nguyễn Thủy 04/04/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(A=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

    Giả sử \(A\in N\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{x+y+t}\in N\\\dfrac{z}{y+z+t}\in N\\\dfrac{t}{x+z+t}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮x+y+t\\z⋮y+z+t\\t⋮x+z+t\end{matrix}\right.\)

    \(x;y;z;t\in N\circledast\) nên:

    \(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge x+y+t\\z\ge y+z+t\\t\ge x+z+t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-x\ge x+y+z-x\\y-y\ge x+y+t-y\\z-z\ge y+z+t-z\\t-t\ge x+z+t-t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z\le0\\x+t\le0\\y+t\le0\\x+z\le0\end{matrix}\right.\)

    \(x;y;z;t\in N\circledast\) nên những điều trên không thể xảy ra

    \(\Rightarrow\) điều giả sử sai,\(A\notin N\left(đpcm\right)\)

      bởi Trần Triệu Thiên 04/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF