OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh x/a=y/2b=z/3c biết (2bz-3cy)/a=(3cx-az)/2b=(ay-2bx)/3c

cho dãy tỉ số bằng nhau: \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\) chứng minh \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

giúp mình nhanh, mình đang cần gấp
  bởi thu trang 12/04/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Theo đầu bài ta có :\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

    Lại có a,b,c\(\ne\)0 vì mẫu phải khác 0

    =>\(\dfrac{2bz-3cy}{a}.\dfrac{a}{a}=\dfrac{3cx-az}{2b}.\dfrac{2b}{2b}=\dfrac{ay-2bx}{3c}.\dfrac{3c}{3c}\)

    =>\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

    Áp dụng tc của dãy tỉ số bằng nhau ta có :

    \(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)

    \(\dfrac{2abz-3acy}{a^2}=0\Rightarrow2abz=3acy\) => 2bz = 3cy => \(\dfrac{z}{3c}=\dfrac{y}{2b}\) (1)

    \(\dfrac{6bcx-2abz}{4b^2}=0\) => 6bcx = 2abz => 3cx = az => \(\dfrac{x}{a}=\dfrac{z}{3c}\) (2)

    Từ (1) và (2) =>\(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (đpcm)

      bởi Phạm Lương 12/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF