OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh x^2-2x+2y^2+8y+9 không âm

CMR: Các đa thức sau đây có giá trị không âm với mọi giá trị của x, y:

a) \(x^2-2x+2y^2+8y+9\)

b) \(\left(x^2-xy+y^2\right)^3+\left(x^2+xy+y^2\right)^3\)

Khi nào thì có đẳng thức?

  bởi Anh Nguyễn 15/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a)\(x^2-2x+2y^2+8y+9\)

    \(=x^2-2x+1+2y^2+8y+8\)

    \(=\left(x-1\right)^2+2\left(y^2+4y+4\right)\)

    \(=\left(x-1\right)^2+2\left(y+2\right)^2\ge0\)

    Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

    b)\(\left(x^2-xy+y^2\right)^3+\left(x^2+xy+y^2\right)^3\)

    \(=\left(x^2-xy+y^2+x^2+xy+y^2\right)\left[\left(x^2-xy+y^2\right)^2-\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)+\left(x^2+xy+y^2\right)^2\right]\)

    \(=2(x^2+y^2)[x^4-2x^3y+3x^2y^2-2xy^3+y^4-x^4-x^2y^2-y^4+x^4+2x^3y+3x^2y^2+2xy^3+y^4]\)

    \(=2(x^2+y^2)(x^4+5x^2y^2+y^4)\ge0 \)

    Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

      bởi Trần Hồ Thanh Hiếu 15/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF