Chứng minh tam giác MBH=tam giác MAK biết A=90 độ, AB=AC, M là trung điểm BC
Cho △ABC, Â = 90o, AB = AC, M là trung điểm của BC, E là một điểm bất kì nằm giữa M và C. Kẻ BH ⊥ AE, CK ⊥ AE (H, K trên đường thẳng AE). Chứng minh rằng:
a) BK = AK.
b) △MBH = △MAK.
c) △MHK vuông cân.
Có thể phải kẻ thêm nhưng đây là hình gốc nè:
Câu trả lời (1)
-
- Không kẻ hình nữa nhé ~
Chứng minh :
a) \(\widehat{ABH}+\widehat{BAH}+\widehat{BHA}=180^o\left(\text{đ/l tổng 3 góc của 1 t/g}\right)\)
Mà \(\widehat{BHA}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=180^o-90^o\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^o\)
Mà \(\widehat{BAH}+\widehat{HAC}=90^o\)
\(\Rightarrow\widehat{ABH}=\widehat{HAC}\)
Xét △BHA vuông tại H và △AKC vuông tại K có:
BA = AC ( gt )
\(\widehat{ABH}=\widehat{HAC}\left(cmt\right)\)
⇒△BHA = △AKC ( ch - gn )
⇒ BH = AK ( tương ứng )
b) Nối A -> M ; K -> M
Xét △BMA và △CMA có:
BA = CA ( gt )
AM - cạnh chung
BM = CM ( gt )
⇒ △BMA = △CMA ( c.c.c )
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{tương ứng}\right)\)
\(\Rightarrow\widehat{BMA}=\widehat{AMC}\left(\text{tương ứng}\right)\)
Mà \(\widehat{BMA}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{BMA}=\widehat{AMC}=90^o\)
Có M là trung điểm của BC
⇒ Tia AM nằm giữa AB và AC
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=90^o\)
Mà \(\widehat{BAM}=\widehat{MAC}\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MAC}=45^o\)
Có \(\widehat{BAM}+\widehat{AMB}+\widehat{ABM}=180^o\left(\text{đ/l tổng 3 góc của 1 t/g}\right)\)
\(\Rightarrow\widehat{ABM}=180^o-90^o-45^o\)
\(\Rightarrow\widehat{ABM}=45^o\)
\(\Rightarrow\widehat{BAM}=\widehat{ABM}\left(=45^o\right)\)
⇒ △ABM cân tại M
⇒ MB = MA
Có E nằm giữa M và C
⇒ Tia AE nằm giữa AC và AM
\(\Rightarrow\widehat{CAH}+\widehat{HAM}=\widehat{MAC}=45^o\)
\(\Rightarrow\widehat{HAM}=45^o-\widehat{CAH}\)
Có \(\widehat{ABH}+\widehat{HBE}=45^o\)
\(\Rightarrow\widehat{HBE}=45^o-\widehat{ABH}\)
Mà \(\widehat{CAH}=\widehat{ABH}\left(cmt\right)\Rightarrow\widehat{HAM}=\widehat{HBE}\)
Xét △MBH và △MAK có :
BM = MA ( cmt )
\(\widehat{HAM}=\widehat{HBE}\left(cmt\right)\)
BH = AK ( cmt )
⇒ △MBH = △MAK ( c.g.c )
⇒ MH = MK ( tương ứng ) (1)
\(\Rightarrow\widehat{BMH}=\widehat{AMK}\left(\text{tương ứng}\right)\)
c)
Có\(\widehat{AMB}+\widehat{AMH}=\widehat{BMH}\)
\(\Rightarrow\widehat{AMH}=\widehat{BMH}-90^o\)
Có \(\widehat{AMC}+\widehat{CMK}=\widehat{AMK}\)
\(\Rightarrow\widehat{CMK}=\widehat{AMK}-90^o\)
Mà\(\widehat{BMH}=\widehat{AMK}\left(cmt\right)\)
\(\Rightarrow\widehat{AMH}=\widehat{CMK}\)
Mà\(\widehat{AMH}+\widehat{HMC}=90^o\)
\(\Rightarrow\widehat{CMK}+\widehat{HMC}=90^o\)
\(\Rightarrow\widehat{HMK}=90^o\)(2)
Từ (1) và (2) ⇒ △HMK vuông cân
bởi lý thị núng22/02/2019
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời