Chứng minh tam giác IBM cân biết từ B vẽ BP vuông góc AC, BP cắt MH tại I
Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC:
a) Chứng minh:\(AM\perp BC\)
b) Chứng minh:\(\Delta ABM=\Delta ACM\)
c) Từ M vẽ MH vuông góc AB và MK vuông góc AC. Chứng minh BH=CK.
d) Từ B vẽ BP vuông góc AC, BP cắt MH tại I. Chứng minh tam giác IBM cân.
Câu trả lời (1)
-
a)Ta có \(\Delta ABC\) cân tại A mà AM là đường trung tuyến
nên AM là đường trung trực hay \(AM\perp BC\)
b)Xét \(\Delta ABM\) và \(\Delta ACM\),có:
AB = AC (\(\Delta ABC\) cân tại A)
AM là cạnh chung
BM = CM ( M là trung điểm BC)
Do đó \(\Delta ABM\) = \(\Delta ACM\) (c-c-c)
c)Xét \(\Delta HBM\) và \(\Delta KCM\),Có:
\(\widehat{H}=\widehat{K}\) (\(=90^0\))
BM = MC (M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\)cân tại A)
Do đó: \(\Delta HBM\) = \(\Delta KCM\) (ch-gn)
\(\Rightarrow HB=CK\) ( 2 cạnh tương ứng )
d)Ta có:\(\Delta HBM\)=\(\Delta KCM\) (cmt) nên \(\widehat{HMB}=\widehat{KMC}\)(2 cạnh tương ứng)
Ta có: \(BP\perp AC\) \(MK\perp AC\) nên BP song song MK
Suy ra \(\widehat{IBM}=\widehat{KMC}\)(2 góc đồng vị)
mà \(\widehat{IMB}=\widehat{KMC}\) nên \(\widehat{IBM}=\widehat{IMB}\) Suy ra \(\Delta IBM\) cân tại I
bởi Nguyễn Bá Ngọc 25/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời