Chứng minh tam giác EMC=tam giác EAN biết EM và AB cắt nhau tại N
Cho tam giác ABC vuông tại A, AB<AC , tia phân giác góc B cắt AC tại E. Kẻ EM vuông góc BC tại M
a) Chứng minh BA=BM
b) Kéo dài EM và AB cắt nhau tại N. Chứng minh tam giác EMC= tam giác EAN
c) Chứng minh BE vuông góc NC
Câu trả lời (1)
-
a) xét ΔBAE và ΔBME có:
\(\widehat{ABE}\) = \(\widehat{MBE}\) ( BE là phân giác của \(\widehat{B}\))
BE chung
\(\widehat{BAE}\) = \(\widehat{BME}\) ( = 90\(^O\))
\(\Rightarrow\) ΔBAE = ΔBME ( cạnh huyền - góc nhọn )
\(\Rightarrow\) BA = BM ( hai cạnh tương ứng )
b) ta có :
ΔBAE = ΔBME ( cmt )
\(\Rightarrow\) AE = ME ( hai cạnh tương ứng )
xét ΔEMC và ΔEAN có :
\(\widehat{EMC}\) = \(\widehat{EAN}\) ( = 90\(^O\))
EM = EA (cmt)
\(\widehat{CEM}\) = \(\widehat{NEA}\) ( hai góc đối đỉnh )
\(\Rightarrow\) ΔEMC = ΔEAN ( cạnh huyền - góc nhọn )
c) ΔEMC = ΔEAN ( cạnh huyền - góc nhọn )
\(\Rightarrow\) \(\widehat{C}\) = \(\widehat{N}\) ( hai góc tương ứng )
xét ΔBEN và ΔBEC có:
\(\widehat{NBE}\) = \(\widehat{CBE}\) ( BE là phân giác của \(\widehat{B}\) )
BE chung
\(\widehat{C}\) = \(\widehat{N}\)( cmt )
\(\Rightarrow\) ΔBEN = ΔBEC ( g.c.g )
\(\widehat{BEN}\)+ \(\widehat{BEC}\) = 180\(^O\) ( hai góc kề bù )
mà \(\widehat{BEN}\) = \(\widehat{BEC}\) ( hai góc tương ứng của ΔBEN = ΔBEC )
\(\Rightarrow\) \(\widehat{BEN}\) = \(\widehat{BEC}\)( = 90\(^O\) )
\(\Rightarrow\) BE \(\perp\) NC
bởi Nguyên Long26/02/2019
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời