Chứng minh tam giác CMN đều biết tam giác ABC cân có B=60 độ
Cho tam giác ABC cân có B = 60 độ. Đường thẳng song song với AB cắt các tia đối của các tia CA, CB lần lượt tại M và N.
a) Chứng minh: Tam giác CMN là tam giác đều.
b) Kẻ CH ⊥ AB tại H. Tia HC cắt MN tại K. Chứng minh: CK ⊥ MN và MK = \(\dfrac{1}{2}\) CM.
Giúp mình với!
Câu trả lời (1)
-
\(\Delta ABC\) cân có \(\widehat{ABC}=60^0\)
\(\Rightarrow\Delta ABC\) là tam giác đều
Xét \(\Delta MNC\) có :
Vì \(\Delta ABC\) là tam giác đều
\(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^0\)
Vì AB // MN
\(\Rightarrow\widehat{BAC}=\widehat{NMC}=60^0\) (đồng vị)
Vì AB // MN
\(\Rightarrow\widehat{ABC}=\widehat{MNC}=60^0\)(đồng vị)
\(\Rightarrow\Delta MNC\) cân tại C
Mà \(\widehat{ACB}=60^0\)
\(\Rightarrow\Delta CMN\) là tam giác đều
b Xét \(\Delta MKC\) và \(\Delta NKC\) có :
MC = NC (Vì \(\Delta CMN\) là tam giác đều)
Vì \(\widehat{AHC}=90^0\)
\(\Rightarrow\widehat{HAC}+\widehat{ACH}=90^0\)
\(\Rightarrow60^0+\widehat{ACH}=90^0\)
\(\Rightarrow\widehat{ACH}=30^0\)
\(\Rightarrow\dfrac{\widehat{ACB}}{2}=\widehat{ACH}\)
\(\Rightarrow CH\) là tia phân giác của \(\widehat{ACB}\)
\(\Rightarrow\widehat{ACH}=\widehat{BCH}\)
KC : cạnh chung
\(\Rightarrow\Delta MKC=\Delta NKC\) (c . g . c)
\(\Rightarrow\widehat{MKC}=\widehat{CKN}\)
Mà \(\widehat{MKC}+\widehat{NKC}=180^0\)
\(\Rightarrow\widehat{MKC}=\widehat{NKC}=\dfrac{1}{2}\times180^0=90^0\)
\(\Rightarrow CK\perp MN\)
Vì \(\Delta MKC=\Delta NKC\)
\(\Rightarrow MK=NK\)
\(\Rightarrow MK=\dfrac{1}{2}\times MN\)
Mà MN = CM
\(\Rightarrow MK=\dfrac{1}{2}\times MC\)bởi Nguyễn Trường Nhân22/02/2019
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời