Chứng minh tam giác AMB bằng tam giác AMC biết AM là đường trung tuyến
Cho \(\Delta\)ABC cân tại A, đường trung tuyến AM ( M\(\in\)BC) biết AB=13 cm, BC= 10cm
a. Chứng minh \(\Delta\)AMB = \(\Delta\)AMC
b. Gọi G là trọng tâm của tam giác ABC. Tính độ dài AG.
Câu trả lời (2)
-
Lời giải:
a)
Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)
Xét tam giác $AMB$ và $AMC$ có:
\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)
b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)
Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)
\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)
Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)
bởi Phạm Hưng 26/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời