Chứng minh QMNR là hình thang cân biết tam giác PQR cân cới PQ=PR
Cho tam giác cân PQR , với PQ=PR. Lấy các điểm M,N tương ứng thuộc PQ, PR ssao cho PM = PN. Chứng minh rằng QMNR là hình thang cân
Câu trả lời (1)
-
Ta có:
\(\Delta PQR\) cân tại P nên \(\widehat{PQR}=\widehat{QRQ}\) (1)
PM=PN \(\Rightarrow\)\(\Delta PMN\) cân tại P
\(\Rightarrow\widehat{PMN}=\widehat{PNM}\)
Mà \(\widehat{PMN}+\widehat{NMQ}=180^0\); \(\widehat{PNM}+\widehat{MNR}=180^0\)
\(\Rightarrow\widehat{NMQ}=\widehat{MNR}\) (2)
Từ (1) và (2) suy ra QMNR là hình thang cân
bởi Nguyễn Quang Công Tôn 28/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời