OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh Q(x)=x(x^2/2-1/2x^3+1/2x)-(-1/2x^4+x^2) nhận mọi giá trị nguyên

Cho đa thức Q(x)=x(\(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\))-(\(-\dfrac{1}{2}x^4+x^2\))

Chứng minh Q(x) nhận mọi giá trị nguyên với mọi số nguyên x

  bởi Nguyễn Thị Lưu 28/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Có: \(Q\left(x\right)=x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)

    \(=\dfrac{x^3}{2}-\dfrac{x^4}{2}+\dfrac{x^2}{2}+\dfrac{x^4}{2}-x^2\)

    \(=\dfrac{x^3}{2}-\left(\dfrac{x^4}{2}-\dfrac{x^4}{2}\right)+\left(\dfrac{x^2}{2}-x^2\right)\)

    \(=\dfrac{x^3}{2}-\dfrac{x^2}{2}=\dfrac{x^3-x^2}{2}\)

    Xét: \(x=2k\left(k\in Z\right)\)

    Suy ra: x3 chẵn; x2 chẵn \(\Rightarrow\)x3-x2 chẵn

    \(\Rightarrow x^3-x^2⋮2\)

    \(\Rightarrow Q\left(x\right)\) nguyên

    Xét: \(x=2k+1\left(k\in Z\right)\)

    Suy ra: x3 lẻ; x2 lẻ \(\Rightarrow\) x3 - x2 chẵn

    \(\Rightarrow x^3-x^2⋮2\)

    \(\Rightarrow Q\left(x\right)\) nguyên

    Vậy Q(x) luôn nhận giá trị nguyên với mọi số nguyên x

      bởi Đỗ Huỳnh Vy Thảo 28/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF