OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh nếu f(x) nhận1, -1 là nghiệm thì a,c là số đối nhau

cho đa thức f(x)=ax^2+bx+c.Chứng minh rằng nếu f(x) nhận1,-1 là nghiệm thì a,c là số đối nhau

  bởi Nguyễn Bảo Trâm 19/12/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vì 1 và -1 là nghiệm của f(x)

    => f(1) = f(-1) = 0

    lại có f(1) = \(a.1^2+b.1+c\) = a+b+c = 0 (1)

    f(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c\) = a-b+c = 0 (2)

    Từ (1) và (2) => (a+b+c)+(a-b+c) = o

    => (a+a)+(b-b)+(c+c) = 0

    => 2a+2c = 0

    => 2(a+c) = 0 Mà 2\(\ne\)0

    => a+c = 0

    <=>\(\left[{}\begin{matrix}a=c=0\\a=-c\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\c=0=-0\end{matrix}\right.\\a=-c\end{matrix}\right.\)

    => a và c là 2 số đối nhau

    Vậy nếu f(x) nhận 1 ; -1 là nghiệm thì a và c là 2 số đối nhau

      bởi Nguyễn Hưởng 19/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF