OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh HA=HB biết tam giác AOB cân tại O có tia phân giác góc AOB cắt AB tại H

cho tam giác aob cân tại o kẻ tia phân giác của góc aob cắt ab tại h

a) chứng minh ha = hb

b) trên cạnh oa lấy điểm m và trên cạnh ob lấy điểm n sao cho om = on chứng minh hm = hn

c) chứng minh mn // ab

  bởi My Le 22/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • O A B M N H

    a) Xét \(\Delta OAH,\Delta OBH\) có:

    \(\widehat{OAH}=\widehat{OBH}\) (ΔABC cân tại A)

    \(AB=AC\) (ΔABC cân tại A)

    \(\widehat{AOH}=\widehat{BOH}\) (OH là tia phân giác của \(\widehat{O}\))

    => \(\Delta OAH=\Delta OBH\left(g.c.g\right)\)

    => HA=HB (2 cạnh tương ứng)

    b) Xét \(\Delta OMH,\Delta ONH\) có:

    \(OM=ON\left(gt\right)\)

    \(\widehat{MOH}=\widehat{NOH}\) (OH là tia phân giác của \(\widehat{O}\))

    \(OH:Chung\)

    => \(\Delta OMH=\Delta ONH\left(c.g.c\right)\)

    => \(HM=HN\) (2 cạnh tương ứng)

    c) Xét \(\Delta OMN\) có :

    \(OM=ON\) (gt)

    => \(\Delta OMN\) cân tại O

    Ta có : \(\widehat{OMN}=\widehat{ONM}=\dfrac{180^{^O}-\widehat{O}}{2}\left(1\right)\)

    Xét \(\Delta AOB\) cân tại O có :

    \(\widehat{OAB}=\widehat{OBA}=\dfrac{180^{^O}-\widehat{O}}{2}\left(2\right)\)

    Từ (1) và (2) => \(\widehat{OMN}=\widehat{OAB}\left(=\dfrac{180^o-\widehat{O}}{2}\right)\)

    Mà thấy : 2 góc này ở vị trí đồng vị

    => \(MN//AB\left(đpcm\right)\)

      bởi nguyễn văn điều 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF