OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh f(x) có ít nhất hai nghiệm biết (x-1)f(x)=(x+5)f(x+3) với mọi x

Cho biết:

\(\left(x-1\right).f\left(x\right)=\left(x+5\right).f\left(x+3\right)\forall x\)

Chứng minh rằng: f(x) có ít nhất hai nghiệm

  bởi Trần Hoàng Mai 17/12/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(\left(x-1\right).f\left(x\right)=\left(x+5\right).f\left(x+3\right)\) (*)

    Thay x = 1 vào (*) ,có :

    \(\left(1-1\right).f\left(1\right)=\left(1+5\right).f\left(1+3\right)\)
    \(\Rightarrow0.f\left(x\right)=6.f\left(4\right)\)
    \(\Rightarrow0=6.f\left(x\right)\)
    \(\Rightarrow f\left(x\right)=0\)
    => x = 1 là nghiệm của đa thức (*)
    Thay x= -5 vào đa thức (*) ,có :
    \(\left(-5-1\right).f\left(x\right)=\left(-5+5\right).f\left(-5+3\right)\)
    \(\Rightarrow-6.f\left(x\right)=0.f\left(-2\right)\)
    \(\Rightarrow6.f\left(x\right)=0\)
    \(\Rightarrow f\left(x\right)=0\)
    Vậy x= -5 là nghiệm của (*)
    Vậy (*) có ít nhất 2 nghiệm
      bởi Lê Thanh Như 17/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF