OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh BN+CM = BC biết tam giác ABC có góc A=60 độ, phân giác góc B và C

Cho \(\Delta ABC\)\(\widehat{A}=60^o\) phân giác \(\widehat{B}\)\(\widehat{C}\) cắt AC và AB lần lượt tại M và N . C/m BN+CM = BC

  bởi Bo Bo 01/03/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • A B D C N M I

    ABC có: A + ABC + ACB = 180o

    => 60o + ABC + ACB = 180o

    => ABC + ACB = 180o - 60o = 120o

    => ABC/2 + ACB/2 = 60o

    Mà ABM = CBM = ABC/2

    ACN = BCN = ACB/2

    Nên MBC + NCB = ABC/2 + ACB/2 = 60o

    Gọi K là giao điểm của CN và BM

    T/g KBC có: KBC + KCB + BKC = 180o

    => 60o + BKC = 180o

    => BKC = 180o - 60o = 120o

    Kẻ KI là phân giác BKC (I thuộc BC)

    => BKI = CKI = BKC/2 = 120o/2 = 60o

    Có: BKC + NKB = 180o ( kề bù)

    => 120o + NKB = 180o

    => NKB = 180o - 120o = 60o

    Xét t/g NBK và t/g IBK có:

    NBK = IBK (cmt)

    BK là cạnh chung

    NKB = IKB = 60o

    Do đó, t/g NBK = t/g IBK (g.c.g)

    => BN = BI (2 cạnh tương ứng) (1)

    Tương tự như vậy ta cũng có: t/g MCK = t/g ICK (g.c.g)

    => MC = IC (2 cạnh tương ứng) (2)

    Từ (1) và (2) => BN + MC = BI + CI = BC (đpcm)

      bởi Huỳnh Thị Ngọc Thảo 01/03/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF