OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh BD là trung trực của AE biết tam giác ABC có góc A = 90 độ

Cho tam giác ABC có góc A = 90 độ. Kẻ phân giác BD, DE vuông góc BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho À = CE

C/M : a) BD là trung trực của AE

b) AD < DC

c) E ; D ; F thẳng hàng

  bởi Bánh Mì 26/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a. Xét \(\Delta BAD\)\(\Delta BED\left(\widehat{BAD}=\widehat{BED}=90^o\right)\) có:

    BD chung

    \(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác của \(\widehat{ABC}\) )

    \(\Rightarrow\Delta BAD=\Delta BED\) (cạnh huyền - góc nhọn)

    \(\Rightarrow BA=BE;AD=DE\)

    \(\Rightarrow BD\) là trung trực của AE

    b. Xét \(\Delta DEC\) có: \(\widehat{DEC}=90^o\)

    \(\Rightarrow CD\) là cạnh lớn nhất

    \(\Rightarrow CD>DE\) mà AD = DE (BD là trung trực của AE)

    \(\Rightarrow AD< CD\)

    c. Xét \(\Delta DAF\)\(\Delta DEC\) có:

    AD = DE (BD là trung trực của AE)

    \(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)

    AF = CE (gt)

    \(\Rightarrow\Delta DAF=\Delta DAC\left(c.g.c\right)\)

    \(\Rightarrow\widehat{ADF}=\widehat{EDC}\)

    \(\widehat{ADE}+\widehat{DEC}=180^o\) (2 góc kề bù)

    \(\Rightarrow\widehat{ADE}+\widehat{ADF}=180^o\)

    \(\Rightarrow\widehat{EDF}=180^o\)

    \(\Rightarrow\) E,D,F thẳng hàng

      bởi Le Huynh Dang Khoa 26/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF