OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh AD là phân giác của ∠HAC biết ABC vuông tại A có đường cao AH

Cho ΔABC vuông tại A, vẽ đường cao AH. Trên BC lấy D sao cho BD=BA

a, Chứng minh ∠BAD = ∠ADB

b, Chứng minh: AD là phân giác của ∠HAC

c, Vẽ DK ⊥ AC ( K∈ AC) Chứng minh: AK= AH

d, Chứng minh: AB+AC<BC+2AH

  bởi bich thu 28/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • a) ΔBAD có : BA = BD

    \(\Rightarrow\) ΔBAD cân tại B

    \(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\)

    b) ΔABC có : \(\widehat{A}\) = 90\(^O\)

    \(\Rightarrow\) \(\widehat{BAD}\) + \(\widehat{DAC}\) = 90\(^O\)

    ΔHAD có : \(\widehat{H}\) = 90\(^O\)

    \(\Rightarrow\) \(\widehat{HAD}\) + \(\widehat{HDA}\) = 90\(^O\)

    \(\Rightarrow\) \(\widehat{BAD}\) + \(\widehat{DAC}\) = \(\widehat{HAD}\) + \(\widehat{HDA}\) ( = 90\(^O\) )

    \(\widehat{BAD}\) = \(\widehat{HDA}\) ( CMT ) \(\Rightarrow\) \(\widehat{DAC}\) = \(\widehat{HAD}\)

    \(\Rightarrow\) AD là phân giác của \(\widehat{HAC}\)

    c) Xét ΔAHD và ΔAKD có :

    \(\widehat{AHD}\) = \(\widehat{AKD}\) = 90\(^O\)

    AD chung

    \(\widehat{HAD}\) = \(\widehat{KAD}\) ( AD là phân giác của \(\widehat{HAC}\) )

    \(\Rightarrow\) Δvuông AHD = Δvuông AKD ( cạnh huyền - góc nhọn )

    \(\Rightarrow\) AH = AK ( hai cạnh tương ứng )

    d) AB + AC = AB + AK + KC

    BC + 2AH = BD + DC + 2AH

    mà AB = BD (GT)

    AK = AH (CMT) \(\Rightarrow\) AK < 2AH

    KC < DC ( quan hệ giữa đường xiên và đường vuông góc )

    \(\Rightarrow\) AB + AC < BC + 2AH

      bởi Diễm My 28/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF