Chứng minh AD=BC biết OC=OA, OB=OD và M là giao điểm của AD và BC
Cho góc xOy khác góc bẹt . Lấy các điểm A , B thuộc tia Ox sao cho OA < OB . Lấy các điểm C , D thuộc tia Oy sao cho OC = OA , OB = OD . Gọi M là giao điểm của AD và BC . Chứng minh rằng :
a) AD = BC
b) \(\Delta MAB=\Delta MCD\)
c) Om là tia phân giác của góc xOy
Câu trả lời (1)
-
(Hình ảnh chỉ mang tính chất minh họa)
a)* Xét \(\Delta OCB\) và \(\Delta OAD\) có:
\(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}.l\text{à}.g\text{óc}.chung\\OB=O\text{D}\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OCB=\Delta OAD\left(c-g-c\right)\)
\(\Rightarrow AD=BC\) (hai cạnh tương ứng)
b) *Ta có: \(\Delta OCB=\Delta OAD\left(cmt\right)\)
\(\Rightarrow\) \(\widehat{B}=\widehat{D}\) (1)
*Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=O\text{D}\end{matrix}\right.\Rightarrow AB=CD\) (2)
* Ta có: \(\Delta OCB=\Delta OAD\left(cmt\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAD}=\widehat{OCB}\\\widehat{OAD}+\widehat{DAB}=180^o\\\widehat{OCB}+\widehat{BCD}=180^o\end{matrix}\right.\)
\(\Rightarrow\widehat{DAB}=\widehat{BC\text{D}}\) (3)
*Từ (1), (2) và (3) \(\Rightarrow\Delta MAB=\Delta MCD\)
c) *Xét \(\Delta OAM\) và \(\Delta OCM\) có:
\(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\AM=CM\\OM.l\text{à.}c\text{ạnh.}chung\end{matrix}\right.\) (Vì \(\Delta MAB=\Delta MCD\Rightarrow\) 2 góc tương ứng bằng nhau)
\(\Rightarrow\Delta OAM=\Delta OCM\left(c-c-c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AOM}=\widehat{COM}\left(2.g\text{óc.}t\text{ương.ứng}\right)\\OM.n\text{ằm}.gi\text{ữa}.OC.v\text{à.}O\text{A}\end{matrix}\right.\)
\(\Rightarrow OM\) là tia phân giác của \(\widehat{xOy}\)
bởi Phạm Quang Đức 22/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời