OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh AC=1/2BC biết tam giác ABC vuông ở A có góc B=30 độ

Cho tam giác ABC vuông ở A có góc B=30 độ.CM: AC=1/2BC

  bởi Phạm Phú Lộc Nữ 13/02/2020
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • 30 A B C D O

    Kẻ từ A một tia cắt BC tại trung điểm O và AO = OD

    => BO = OC

    Xét \(\Delta\)BOA và \(\Delta\)COD có:

    BO = CO (ở trên)

    \(\widehat{BOA}\) = \(\widehat{COD}\) (đối đỉnh)

    OA = OD (ở trên)

    => \(\Delta\)BOA = \(\Delta\)COD (c.g.c)

    => AB = CD (2 cạnh t/ư)

    \(\widehat{ABO}\) = \(\widehat{DCO}\) (2 góc t/ư)

    mà 2 góc này ở vị trí so le trong nên AB // CD

    => \(\widehat{BAC}\) + \(\widehat{ACD}\) = 180o (trong cùng phía)

    => 90o + \(\widehat{ACD}\) = 180o

    => \(\widehat{ACD}\) = 180o

    Do đó \(\Delta\)ACD vuông tại C

    Xét \(\Delta\)ABC vuông tại A và \(\Delta\)CDA vuông tại C có:

    AB = CD (c/m trên)

    AC chung

    => \(\Delta\)ABC = \(\Delta\)CDA (cgv - cgv)

    => BC = DA (2 cạnh t/ư)

    mà OC = \(\frac{1}{2}\) BC (O là tđ)

    OA = \(\frac{1}{2}\) AD (O là tđ)

    => OC = OA

    => \(\Delta\)OAC cân tại O (1)

    Áp dụng tc tgv ta có:

    \(\widehat{B}\) + \(\widehat{BCA}\) = 90o

    => 30o + \(\widehat{BCA}\) = 90o

    => \(\widehat{BCA}\) = 60o

    hay \(\widehat{OCA}\) = 60o (2)

    Từ (1) và (2) suy ra \(\Delta\)OCA đều

    => AC = OC

    mà OC = \(\frac{1}{2}\) BC => AC = \(\frac{1}{2}\) BC .

      bởi Nguyễn Thanh Rồng 13/02/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF