OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh (ab+bc+ca) > a^2+b^2+c^2 biết a, b, c là 3 cạnh của 1 tam giác

Cho a,b,c là 3 cạnh của 1 tam giác. Chứng minh rằng: ( ab+bc+ca) > a2 +b2+c2

  bởi hoàng duy 11/12/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài giải

    Ta có : ( a + b )2 >=0=> a2 + 2ab + b2 >=2ab.(1)

    (b+c)2 >=0=> b2 + 2bc + c2 >= 0 => b2 +c2 >=2bc.(2)

    (c+a)2>=0=> c2 + 2ca + a2 >=0=> c2+a2 >=2ca.(3)

    Cộng (1) ; (2) ; (3) theo vế - ta có : 2(a2+b2+c2)>=2(ab+bc+ca).

    => a2 + b2 + c2 >= ab + bc + ca (*)

    Áp dụng bất đẳng thức trong tam giác - ta có:

    a+b>c=>ac+bc>c2 . (4)

    b+c>a=>ab+ac>a2 . (5)

    c+a>b=>bc+ab>b2 . (6)

    Cộng (4) ; (5) ; (6) theo vế - ta có :

    2(ab+bc+ca)>a2+b2+c2(**)

    Từ (*) ; (**) => đpcm.

      bởi tranduc thang 11/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF