Chứng minh (a+c/b+d)^8=(a^8+b^8)/(b^8+d^8) biết a+c=2b, c(b+d)=bd
Cho 4 số nguyên dương a;b;c;d thỏa mãn điều kiện a + c = 2b và c(b + d) = bd . Chứng minh rằng : \(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\)
Câu trả lời (1)
-
Ta có:
\(c.\left(b+d\right)=2bd\)
\(\Rightarrow bc+cd=2bd\)
Lại có: \(a+c=2b\)
Lấy vế chia vế được: \(\dfrac{bc+cd}{a+c}=\dfrac{2bd}{2b}=d\)
\(\Rightarrow bc+cd=ad+cd\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
* \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^8=\left(\dfrac{a}{b}\right)^8=\dfrac{a^8}{b^8}\left(1\right)\)
* \(\dfrac{a}{b}=\dfrac{c}{d}=\left(\dfrac{a}{b}\right)^8=\left(\dfrac{c}{d}\right)^8\)
\(\Rightarrow\dfrac{a^8}{b^8}=\dfrac{c^8}{d^8}=\dfrac{a^8+c^8}{b^8+d^8}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\left(đpcm\right)\)
bởi Trần Thị Hồng 30/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời