OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh a, b, c, d chia hết cho 5 biết P(x) = ax^3 + bx^2 + cx + d chia hết cho 5

Cho đa thức P(x) = ax3 + bx2 + cx + d có các hệ số a, b, c, d nguyên.

Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5

  bởi bala bala 02/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(P\left(0\right)=d\)

    => d chia hết cho 5

    \(P\left(1\right)=a+b+c+d\)

    => a + b + c chia hết cho 5 (1)

    \(P\left(-1\right)=-a+b-c+d\) chia hết cho 5 (2)

    Cộng (1) và (2) ta được:

    2b + 2d chia hết cho 5

    Mà d chia hết cho 5 => 2d chia hết cho 5

    => 2b chia hết cho 5

    => b chia hết cho 5

    \(P\left(2\right)=8a+4b+2c+d\) chia hết cho 5

    => 8a + 2c chia hết cho 5 ( Vì 4b + d chia hết cho 5 )

    => 6a + 2a + 2c chia hết cho 5

    => 6a + 2( a + c ) chia hết cho 5

    => 2( a + c ) chia hết cho 5 ( Vì a + b + c chia hết cho 5, b chia hết cho 5 )

    => 6a chia hết cho 5

    => a chia hết cho 5

    => c chia hết cho 5

    Vậy a ; b ; c ; d chia hết cho 5

      bởi Vũ Đức Cương 02/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF