OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh a^2/b^2=(2c^2-ac)/(2d^2-bd) biết a/b=c/d

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) CMR:
a. \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

b. \(\dfrac{ma+nb}{ma-nb}=\dfrac{mc+nd}{mc-nd}\)

c. \(\left(\dfrac{a-b}{c-d}\right)^{^{ }3}=\dfrac{a^3+b^3}{c^3+d^3}\) (Làm theo cách Dãy tỉ số bằng nhau)

  bởi Nguyễn Tiểu Ly 26/02/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Theo đề bài ta có:
    \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
    Áp dụng tính chất dãy tỉ số bằng nhau:
    \(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
    => \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
    b) Theo đề bài ta có:
    \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
    Áp dụng tính chất dãy tỉ số bằng nhau:
    \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
    => \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
    c) Theo đề bài ta có:
    \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
    Áp dụng tính chất dãy tỉ số bằng nhau:
    \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
    Áp dụng tính chất dãy tỉ số bằng nhau:
    \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
    Từ (1) và (2) suy ra:
    \(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)

      bởi Hiền Hiền 27/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF