OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh (2005a-2006b)/(2006c+2007d)=(2005c-2006d)/(2006a+2007d)

Cho tỉ lệ thức: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau

6)\(\dfrac{2005a-2006b}{2006c+2007d}\)=\(\dfrac{2005c-2006d}{2006a+2007b}\)

Giúp rồi tick cho

  bởi An Nhiên 28/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Từ \(\dfrac{2005a-2006b}{2006c+2007d}=\dfrac{2005c-2006d}{2006a+2007b}\)

    => \(\dfrac{2005a-2006b}{2005c-2006d}=\dfrac{2006c+2007d}{2006a+2007b}\) (1)

    Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

    => \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{d}{b}\)

    => \(\dfrac{2005a}{2005c}=\dfrac{2006b}{2006d}\)

    Áp dụng t/c dãy tỉ số bằng nhau:

    \(\dfrac{2005a}{2005c}=\dfrac{2006b}{2006d}=\dfrac{2005a+2006b}{2005c+2006d}\) (2)

    Từ \(\dfrac{a}{c}=\dfrac{b}{d}\)

    => \(\dfrac{2006a}{2006c}=\dfrac{2007d}{2007b}\)

    Áp dụng t/c dãy tỉ số bằng nhau:

    \(\dfrac{2006a}{2006c}=\dfrac{2007b}{2007d}=\dfrac{2006a-2007d}{2006c-2007b}\) (3)

    Từ (1),(2),(3) => \(\dfrac{2005a-2006b}{2006c+2007d}=\dfrac{2005c-2006d}{2006a+2007b}\)

      bởi Lê Thị Kim Huệ 28/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF