OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh 1/căn1+1/căn2+1/căn3+...+1/căn100 > 100

CMR:\(\dfrac{1}{\sqrt{1}}\)+\(\dfrac{1}{\sqrt{2}}\)+\(\dfrac{1}{\sqrt{3}}\)+....+\(\dfrac{1}{\sqrt{100}}\)>100

  bởi Duy Quang 13/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)

    \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

    Suy ra:

    \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

    \(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)

    \(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)

    \(\)\(linh>10\left(đpcm\right)\)

    Bài này ko phải 100 nhé

      bởi đặng phùng quí 13/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF