Cho tam giác đều ABC trong đó MA = 1cm, MB = 2cm, tính độ dài cạnh của tam giác ABC
Giúp em nhanh với mấy anh chị ơi
Cho tam giác đều ABC, điểm M ở bên trong tam giác, trong đó MA = 1cm, MB = 2cm, MC = \(\sqrt 3\) cm
a. Tính độ dài cạnh của tam giác ABC.
b, Tính số đo các góc AMB, BMC, CMA.
Câu trả lời (2)
-
a, Vẽ \(\Delta BMD\) đều (D và M khác phía đối với AB)
Xét \(\Delta BDA\) và \(\Delta BMC\):
BD = BM
BA = BC
\(\widehat {DBA} = \widehat {MBC} = {60^0} - \widehat {ABM}\)
Vậy \(\Delta BDA = \Delta BMC\) (c.g.c)
\( \Rightarrow DA = MC = \sqrt 3 \)
\(\Delta ADM\) có \(A{D^2} + A{M^2} = 3 + 1 = 4 = M{D^2}\)
\( \Rightarrow \widehat {MAD} = {90^0}\) (định lý Pitago đảo)
\(\Delta ADM\) vuông có \(MA = \frac{1}{2}MD\) nên \(\widehat {ADM} = {30^0}\)
Suy ra \(\widehat {ADB} = \widehat {ADM} + \widehat {MDB} = {30^0} + {60^0} = {90^0}\)
Trong \(\Delta ADB\) vuông \(A{B^2} = A{D^2} + D{B^2} = 3 + 4 = 7\)
Vậy \(AB = \sqrt 7 cm\)
b, \(\widehat {AMB} = \widehat {AMD} + \widehat {BMD} = {60^0} + {60^0} = {120^0}\)
\(\Delta BMC\) có \(M{B^2} + M{C^2} = 4 + 3 = 7 = B{C^2}\)
\( \Rightarrow \widehat {BMC} = {90^0}\) (định lý Pitago đảo)
\( \Rightarrow \widehat {AMC} = {150^0}\)
bởi khanh nguyen 26/03/2018Like (0) Báo cáo sai phạm -
em cảm ơn anh chị nhiều ạ
bởi thanh hằng 27/03/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời