Các phân giác ngoài của tg ABC cắt nhau tạo thành tg EFG, tính các góc
em k bít làm câu này ai giải hộ e vs ạ
Các phân giác ngoài của \(\Delta ABC\) cắt nhau tạo thành \(\Delta EFG\).
a. Tính các góc của \(\Delta EFG\) theo các góc của \(\Delta ABC\).
b. Chứng minh các phân giác trong của \(\Delta ABC\) đi qua các đính E, F, G.
Câu trả lời (2)
-
a. Kí hiệu như hình vẽ.
Trong \(\Delta GAB\) có: \(\widehat G = {180^0} - \frac{1}{2}(\widehat {xAB} - \widehat {yBA}) \)
mà \(\widehat {xAB} = \widehat B + \widehat C\) (góc ngoài tại A của \(\Delta ABC\))
\(\widehat {yBA} = \widehat A + \widehat C\) (góc ngoài tại B của \(\Delta ABC\)).
Suy ra
\(\widehat G = {180^0} - \frac{1}{2}(\widehat A + \widehat B + 2\widehat C)\)
\(= {180^0} - \frac{1}{2}({180^0} + \widehat C)\) vì \(\widehat A + \widehat B + \widehat C = {180^0}\)
\( = {90^0} - \frac{1}{2}\widehat C = \frac{{{{180}^0} - \widehat C}}{2} = \frac{{\widehat A + \widehat B + \widehat C - \widehat C}}{2}\)
Vậy \(\widehat G = \frac{{\widehat A + \widehat B}}{2}\)
Tương tự
\(\widehat F = \frac{{\widehat A + \widehat C}}{2}\)
\(\widehat E = \frac{{\widehat B + \widehat C}}{2}\)
b. Kẻ GH, GK, GM lần lượt vuông góc với AC, AB, BC.
Ta có: GH = GK (vì G thuộc phân giác \(\widehat {xAB}\) )
GK = GM (vì G thuộc phân giác \(\widehat {yBA}\))
Suy ra GH = GM, nên G nằm trên đương phân giác của \(\widehat {ACB}\) hay đường phân giác của góc C đi qua G.
Tương tự đường phân giác của góc B đi qua F, đường phân giác của góc A đi qua E.
bởi hai trieu 28/03/2018Like (0) Báo cáo sai phạm -
em cảm ơn nhìu ạ
bởi thanh hằng 30/03/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời