OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài 91 trang 54 SBT Toán 7 tập 2

Bài 91 (Sách bài tập - tập 2 - trang 54)

Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, Ab, AC

a) Có nhận xét gì về các độ dài EH, EG, EK 

b) Chứng minh AE là tia phân giác của góc BAC

c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D, F. Chứng minh rằng EA vuông góc với DF

d) Các đường thẳng AE, BF, CD là các đường gì trong tam giác ABC ?

e) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?

  bởi Nguyễn Anh Hưng 10/12/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a) E thuộc tia phân giác của CBH^

    EG = EH (tính chất tia phân giác) (1)

    E thuộc tia phân giác của BCK^

    EG = EK (tính chất tia phân giác) (2)

    Từ (1) và (2) suy ra: EH = EG = EK

    b) EH = EK

    E thuộc tia phân giác của BAC^ mà E # A

    Vậy AE là tia phân giác của BAC^

    c) AE là tia phân giác góc trong tại đỉnh A.

    AF là tia phân giác góc ngoài tại đỉnh A.

    AEAF (tính chất hai góc kề bù)

    Hay AEDF

    d) Chứng minh tương tự câu a ta có BF là tia phân giác của ABC^

    CD là tia phân giác của ACB^

    Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

    e) BF là phân giác góc trong tại đỉnh B.

    BE là phân giác góc ngoài tại đỉnh B.

    BFBE (tính chất hai góc kề bù)

    Hay BFED

    CD là đường phân giác góc trong tại C

    CE là đường phân giác góc ngoài tại C

    CDCE (tính chất hai góc kề bù)

    Hay

      bởi Nguyễn Minh Hằng 10/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF