OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

So sánh A=1/2^2+1/3^2+1/4^2+...+1/2012^2 với 1

Câu 1. Cho A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\). So sánh A và 1.

Câu 2. Tính \(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+\dfrac{2014}{1+2+3+4}+...+\dfrac{2014}{1+2+3+4+...+2013}\)

Câu 3. Cho A=\(\dfrac{6n+42}{6n}\)với n \(\in\) Z và n \(\ne\) 0. Tìm tất cả các số nguyên n sao cho A cũng là số nguyên.

Câu 4. So sánh A=\(\dfrac{17^{18}+1}{17^{19}+1}\) và B=\(\dfrac{17^{17}+1}{17^{18}+1}\).

  bởi hà trang 12/11/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • 1)

    \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\left(1\right)\)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\\ =\dfrac{1}{1}-\dfrac{1}{2012}< 1\left(2\right)\)

    Từ (1) và (2) ta có: A < 1

    2)

    \(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\\ =2014\cdot\left(\dfrac{1}{1}+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\\ =2014\cdot\left(\dfrac{1}{\left(1\cdot2\right):2}+\dfrac{1}{\left(2\cdot3\right):2}+\dfrac{1}{\left(3\cdot4\right):2}+...+\dfrac{1}{\left(2013\cdot2014\right):2}\right)\\ =2014\cdot\left(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{2013\cdot2014}\right)\\ =2014\cdot2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2013\cdot2014}\right)\\ =4028\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\\ =4028\cdot\left(1-\dfrac{1}{2014}\right)\\ =4028\cdot\dfrac{2013}{2014}\\ =4026\)

    3)

    Để A là số nguyên thì \(6n+42⋮6n\Rightarrow42⋮6n\Rightarrow6n\inƯ\left(42\right)\)

    \(Ư\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

    6n 1 2 3 6 7 14 21 42
    n \(\dfrac{1}{6}\) \(\dfrac{1}{3}\) \(\dfrac{1}{2}\) 1 \(\dfrac{7}{6}\) \(\dfrac{7}{3}\) \(\dfrac{7}{2}\) 7

    Vì n là số tự nhiên nên n = 1 hoặc n = 7

    4)

    \(A=\dfrac{17^{18}+1}{17^{19}+1}< \dfrac{17^{18}+1+16}{17^{19}+1+16}=\dfrac{17^{18}+17}{17^{19}+17}=\dfrac{17\cdot\left(17^{17}+1\right)}{17\cdot\left(17^{18}+1\right)}=\dfrac{17^{17}+1}{17^{18}+1}=B\)

    Vậy A<B

      bởi Gibbon Bone 12/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF