OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) ( cho \(3\)) cũng dư \(m\).

Ví dụ: Số \(1543\) có tổng các chữ số bằng: \(1 + 5 + 4 + 3 = 13\). Số \(13\) chia cho \(9\) dư \(4,\) chia cho \(3\) dư \(1\). Do đó số \(1543\) chia cho \(9\) dư \(4\), chia cho \(3\) dư \(1\).

Tìm số dư khi chia mỗi số sau cho \(9\), cho \(3:\)

\(1546; 1526; 2468; 10^{11}\)

  bởi Bánh Mì 25/01/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Chỉ cần tìm dư trong phép chia tổng các chữ số cho \(9\), cho \(3\).

    +) Vì \(1 + 5 + 4 + 6 = 16\) chia cho \(9\) dư \(7\) và chia cho \(3\) dư \(1\) nên \(1546\) chia cho \(9\) dư \(7\), chia cho \(3\) dư \(1\); 

    +) Vì \(1 + 5 + 2 + 7 = 15\) chia cho \(9\) dư \(6\) và \(15\) chia hết cho \(3\) nên \(1527\) chia cho \(9\) dư \(6\) chia hết cho \(3\);

    + Vì \(2+4+6+8=20\) chia cho 9 dư 2 và chia cho 3 dư 2 nên \(2468\) chia cho \(9\) dư \(2\), chia cho \(3\) dư \(2\);

    +) \(10^{11}=100\,000\,000 \,000\) có tổng các chữ số là \(1\) và \(1\) chia cho \(9\) dư \(1\), chia cho \(3\) dư \(1\) nên \(10^{11}\) chia cho \(9\) dư \(1\), chia cho \(3\) dư \(1\).

      bởi Nguyễn Thanh Thảo 26/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF