OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh S=5+5^2|5^3+...+5^2004 chia hết cho 126

S=5+52+53+...+52004

Chứng minh S chia hết cho 126

  bởi Tieu Dong 22/09/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(S=5+5^2+5^3+...........+5^{2004}\)(\(2004\) số hạng)

    \(\Leftrightarrow S=\left(5+5^3\right)+\left(5^2+5^4\right)+..........+\left(5^{2001}+5^{2004}\right)\)(\(1007\) số hạng)

    \(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)

    \(\Leftrightarrow S=5.126+5^2.126+..........+5^{2001}.126\)

    \(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)

    \(\Leftrightarrow S⋮126\rightarrowđpcm\)

      bởi Đỗ Danh Hoàng 22/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF